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We examine how the two different mechanisms proposed historically for biological evolution compare for
the determination of crystal structures from random initial lattice configurations. The Darwinian theory of
evolution contends that the genetic makeup inherited at birth is the one passed on during mating to new
offspring, in which case evolution is a product of environmental pressure and chance. In addition to this
mechanism, Lamarck surmised that individuals can also pass on traits acquired during their lifetime. Here we
show that the minimum-energy configurations of a binary A1−xBx alloy in the full 0�x�1 concentration range
can be found much faster if the conventional Darwinian genetic progression—mating configurations and letting
the lowest-energy �fittest� offspring survive—is allowed to experience Lamarckian-style fitness improvements
during its lifetime. Such improvements consist of A↔B transmutations of some atomic sites �not just atomic
relaxations� guided by “virtual-atom” energy gradients. This hybrid evolution is shown to provide an efficient
solution to a generalized Ising Hamiltonian, illustrated here by finding the ground states of face-centered-cubic
Au1−xPdx using a cluster-expansion functional fitted to first-principles total energies. The statistical rate of
success of the search strategies and their practical applicability are rigorously documented in terms of average
number of evaluations required to find the solution out of 400 independent evolutionary runs with different
random seeds. We show that all exact ground states of a 12-atom supercell �212 configurations� can be found
within 330 total-energy evaluations, whereas a 36-atom supercell �236 configurations� requires on average
39 000 evaluations. Thus, this problem cannot be currently addressed with confidence using costly energy
functionals �e.g., density-functional theory �DFT� based� unless it is limited to �20 atoms. The computational
cost can be reduced at the expense of accuracy: Searching for all approximate-minimum-energy configurations
�within 3 meV� of a 12- or 36-atom supercell requires on average 30 or 580 total-energy evaluations, respec-
tively. Thus it could be addressed even by costly energy functionals such as density-functional theory.
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I. INTRODUCTION

At the heart of solid-state physics and structural inorganic
chemistry is the form/function relationship between crystal
structure and crystal properties.1–3 This recognition has led to
continued efforts in measuring and cataloging crystal
structures4 and, more recently, to systematic efforts in the
theoretical prediction of crystal structures, either from induc-
tive “Pauling-esque” approaches2,3 or from explicit quantum-
mechanical total-energy minimization approaches.5 There are
generally two sets of structural degrees of freedom that need
be determined in crystals—the unit-cell lattice structure and
the decoration of atomic sites by different atomic types. His-
torically, a concentric hierarchy of three crystal-structure-
optimization problems can be distinguished according to the
type and amount of information assumed at the outset re-
garding these degrees of freedom. In the first class of prob-
lems �hereafter referred to as type �i��, the system’s lattice
structure �e.g., fcc� and the decoration of the lattice sites by
different atomic types are assumed. Left to optimize are cell-
internal degrees of freedom not specified by the space group
and the cell-external degrees of freedom, such as volume or
the tetragonal c

a ratio.6–8 In the second type of problems
�hereafter referred to as type �ii��, one attempts to populate
the N sites of a given skeletal structure—a molecular back-
bone in chemistry,9,10 or a Bravais lattice in solid-state
physics11–15—with M different substituents, e.g., chemical
groups or atomic species. This search of the space of MN

possible configurations ��� for the minimum-energy struc-
ture of an A1−xBx system on a lattice represents the classic
Ising problem16–18 cast more recently into a cluster-
expansion form13,15 where the interaction energies are deter-
mined from first principles. In the third and most ambitious
type of search problem �hereafter referred to as type �iii��,
both lattice vectors and configurations are determined
through energy minimization. Initial progress in this last type
of problem was reported recently for both finite clusters19,20

and infinite periodic solids.21–24

Here we discuss type �ii� problems. In historic Ising-
Hamiltonian problems, the complexity of the configuration-
search space was limited by a priori assumptions on the
nature and range of the underlying interactions �e.g., first and
second neighbors only,12,25–27 such that the ensuing ground-
state configurations were characterized by small unit cells
with N�8�. However, unbiased first-principles determina-
tion of the interactions28–32 revealed subsequently that many
binary metals and semiconductor alloys are characterized by
nontrivial pair interactions �typically extending to �10
neighbors�, rendering the search space quite complex and
requiring new ground-state search methods. Furthermore,
since the search space grows exponentially with the number
of lattice sites considered, N, obtaining the minimum-energy
configurations through exhaustive enumeration14 is difficult
for N�20. One has to resort to so-called sampling methods
which investigate only a fraction of the full configuration
space. Even so, searching for the exact configurations with
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minimum energy of three-dimensional Ising models33 is non-
deterministic polynomial-time �NP� hard; i.e., the number of
trial structures of which the energy is evaluated during the
search grows exponentially with the number of atoms, N, in
the system.34 The key question about any such search proce-
dure is therefore how many evaluations of the total energy
are needed to obtain the correct minimum-energy configura-
tions with a given degree of confidence.

The number of configurations for which the total energy
must be evaluated in order to identify the lowest-energy con-
figurations with a given degree of confidence depends on the
extent to which a given material system is dominated by the
NP-hard combinatorial issue of site decorations, or by sim-
pler noncombinatorial factors. For example, from a
complexity-theory point of view, it is not clear whether
lattice-type and unit-cell optimizations are NP hard.35,36 In
metal alloys whose constituents are both nearly isovalent and
have the same lattice type �e.g., fcc Au1−xPdx,

28 fcc
Au1−xCux,

32 or bcc Mo1−xTax �Ref. 30��, alteration of the
lattice type corresponds to easily resolvable high-energy ex-
citations, whereas combinatorial A↔B cross substitutions on
the same lattice type �type �ii� optimization� cost little energy
and thus correspond to difficult-to-resolve low-energy exci-
tations. In contrast, cross substitutions of cations and anions
in valence compounds1,2 �e.g., As-on-Ga “antisite defect” in
GaAs or anion/cation cross substitutions in Al2O3 and
MgSiO3� correspond to easily resolvable high-energy excita-
tions, whereas alteration of the lattice type corresponds to a
low-energy excitation.8,37 As a result, determining the lattice
type becomes the bottleneck for structure optimization of
valence compounds. Previous applications of genetic algo-
rithms to type �iii� structure optimization of TiO2, Al2O3,
MgSiO3, and �NH2�2CO have claimed21,38 nearly 100% suc-
cess at finding the correct lowest-energy structure within
only �1000 total-energy evaluations for structures contain-
ing as many as N=80 atoms. Yet, a systematic and rigorous
investigation39 of type �ii� optimization for a metal-alloy sys-
tem indicates that even for N=40, as many as �3500 evalu-
ations were needed using a genetic algorithm,40 suggesting
that N=80 systems cannot be computed in this way on
present deterministic computers. Clearly, the challenge is to
address and document the success rate of structural optimi-
zation problems in systems which are dominated by the NP-
hard combinatorial issue of selecting site decorations.

We present efficient search methods for the determination
of minimum-energy configurations. As an example, we focus
on the face-centered-cubic Au1−xPdx alloy within the full
composition range, 0�x�1. This space corresponds to 2N

possible combinations. Instead of using a pure Darwinian
genetic algorithm,41 we introduce a Lamarckian refinement.
Historically, two different mechanisms were proposed for
evolution. The Darwinian theory of evolution42 contended
that the genetic makeup inherited at birth is the one passed
on during mating to new offspring, in which case evolution
is a product of environmental pressure and chance.
Lamarck43 surmised that, additionally, traits acquired during
an individual’s lifetime can be passed on to its offspring.
Darwinian genetic algorithms41 �GAs� are a class of search
procedures which mimic natural evolution: populations of
configurations are allowed to evolve through: �a� “mating,”

e.g., the creation of new offspring configurations which re-
tain the characteristics of their parents; and �b� “survival of
the fittest,” where the fitness of an individual depends on its
total energy. Our Lamarckian genetic algorithms �L-GAs�
allows additionally for individuals to change their “genetic
makeup” through a local fitness-improvement procedure
prior to mating. This refinement is not limited to atomic
relaxation19,21–24 but, most importantly, also includes trans-
mutations of A atoms into B atoms, guided by the local gra-
dient of the total energy. Indeed, the computational effort
needed to obtain the gradients of a functional, such as the
generalized Ising model in this paper, is oftentimes less than
the computational effort necessary for of full evaluation of
the total energy. Departing from conventional discrete lattice
representations,11,16–18,25,30 where each site is occupied either
by an A or a B atom, we use a continuous representation, as
used by Wang et al.,9 where each site i is occupied by a
different “virtual” �Axi

B1−xi
	 atom whose propensity to be-

come pure A or pure B is reflected by the energy gradient
with respect to xi.

44

In this paper, we examine the ability of genetic algorithm
search strategies to address ground-state search problems
with bit-string and reciprocal-space matings by using Dar-
winian evolution and Lamarckian refinements in the form of
a virtual-atom minimization. We study both a single-solution
problem, searching for the single deepest ground state of a
given supercell, and a multiple-solution problem, searching
for all ground states of a given supercell. The search strate-
gies’ success is defined as a statistical quantity. It allows us
to rigorously compare the search strategies presented in the
paper as well as set practical limits for their use. We find the
reciprocal-space Lamarckian GA to be the most efficient
search strategy, as well as the most “black box.” Solving for
the all ground states in the range 0�x�1 of an AuxPd1−x
alloy on a 12-atom fcc supercell requires on average as many
as 330 total-energy evaluations and grows exponentially with
the size of the supercell to 39 000 total-energy evaluations
for 36 atoms. Hence, searching for exact ground states re-
quires a computationally inexpensive functional such as clus-
ter expansion. However, we show that if this constraint is
relaxed and one searches for only an approximate result
�within 3 meV�,39 the average number of evaluations falls
down to 30 for a 12-atom supercell and to 580 for a 36-atom
supercell.

II. SEARCHING THE CONFIGURATION SPACE IN TYPE
(ii) PROBLEMS

A. Search space of a binary-alloy configuration on a fixed
lattice: Supercells and supercell decorations

The search space considered in type �ii� problems consists
of all periodic decorations of a binary alloy on a fixed lattice.
It can be parametrized by two types of degrees of freedom:
�i� the supercell type defining the periodicity of the structure
and �ii� the decorations of the sites within this supercell.
Thus, as shown in Ref. 11, the space consisting of N-atom
configurations can be partitioned according to the transla-
tional symmetries into groups of “inequivalent cell shapes”
�ICSs�. Each ICS contains a number of “same-shape struc-
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tures,” e.g., different ApBq=N−p decorations of the N periodic
lattice sites. It was shown empirically11 that the number of
ICSs evolves as �N2/3, whereas the number of all same-
shape structures �reduced by the symmetries of the lattice�
with N atoms evolves as �Ae0.6N. In order to find the
minimum-energy configurations of a binary alloy on a fixed
lattice, we follow the strategy outlined in Ref. 11, whereby
each ICS is sampled individually. There are 243 ICSs for
N�20 and 1282 ICSs for N�32 which must be explored to
search the full configuration space.

In many of the searches performed below, we will look
for the ground states in a single inequivalent cell shape, e.g.,
one n�m� p supercell, and sample its decorations. Obvi-
ously, obtaining the ground states of the system requires ex-
amining all ICSs, one by one. This is not attempted in this
paper. The exact algorithmic details for such a procedure can
be found in Ref. 11.

B. Definition of the ground states of a binary alloy
in the x« [0 ,1] concentration range

In lattice statistical mechanics,12,25,45 the ground-state line
is defined via the convex hull C�x�� �Fig. 1�, which is the
collection of all thermodynamically stable structures on a
given lattice at T=0 K. It is constructed in two steps. First,
one selects at each concentration xi the configuration �i with
the lowest formation energy �H���. In the second step, one
deletes any configuration �xi

that can disproportionate into a
sum of two neighboring configurations �i−1 and �i+1, with
x�i−1

�x�i
�x�i+1

,

�H��i� �
x�i+1

− x�i

x�i+1
− x�i−x

�H��i−1� +
x� − x�i−1

x�i+1
− x�i−1

�H��i+1� .

�1�

Such configurations will disproportionate since their forma-
tion energies are higher than equivalent mixtures of the for-
mation energies of their neighbors. C�n��x�� denotes the con-

vex hull constructed from all known configurations up to
iteration n in the configuration search. To search simulta-
neously for all ground states over 0�x�1 and over one
ICS, we define the fitness of a configuration � with concen-
tration x� as the depth

	�n���� = �H��� − C�n��x�� , �2�

e.g., as the difference between the formation energy �H���
and the known convex hull C�n��x�� at iteration n �see Fig. 2�.
In comparison to previous approaches11,21,38 where the sto-
ichiometry ApBq of the search space was fixed, this fitness
function allows us to examine the full concentration range
x� �0,1� simultaneously.

It is often the case that the property one is searching for is
single valued, e.g., one is searching for the maximum elec-
tronic polarizability.9 As such, we present also in the follow-
ing the results for seeking the deepest minimum-energy con-
figuration only, in which case the formation enthalpy �H���
alone is minimized. Appendix B discusses how using the
distance from the known convex hull as an objective func-
tion can also speed up the search for the deepest ground state
only �as opposed to all ground states�.

C. Exact versus “fuzzy” answers

When searching for the thermodynamically stable decora-
tions at 0 K of a binary alloy, one is confronted with a prob-
lem where nothing less than the global optima defined by the
convex-hull line are acceptable solutions. Nonetheless, there
are problems for which a “fuzzy” answer will do. For in-
stance, one may seek superlattices of quaternary
semiconductors46 with a band gap of approximately 310
meV. We will show that such a fuzzy search is remarkably
less demanding �by a few orders of magnitude� than the “ex-
act” search required by exact ground-state determination.

Schematics of the Convex-Hull of an
A1−xBx Binary Alloy
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FIG. 1. �Color online� Schematic representation of the convex
hull of a binary AxB1−x alloy at iterations n and n+1. It is con-
structed by linking the lowest lying structures such that C�n��x� is
convex. Structures lying on the convex hull are the only thermody-
namically permissible structures at T=0 K. As shown in the figure,
the values of the objective functions 	�n���i� and 	�n��� j� of con-
figurations �i and � j change as the convex hull is refined.
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FIG. 2. �Color online� Number of local minima of face-
centered-cubic Au1−xPdx for 2�2�n supercells with respect to the
number of possible decorations, �24n�. The growth is exponential
with the number of atomic sites. The uppermost line accounts for all
local minima, the middle line is for local minima with �H���
�−81.48 meV, and the bottom line is for local minima with
�H����−82.78 meV. Especially for larger supercells, the local
minima are concentrated around energies close to the global mini-
mum. Local minima were obtained using the virtual-atom approach
described in the text.
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D. Type of questions asked

We will show that the performance of a search is highly
dependent upon the exact nature of the question asked. We
present in the following four searches with four different
objectives:

Question 1. Find the exact deepest ground state of a bi-
nary alloy on fixed lattice for a given n�m� p supercell
�e.g., for one ICS�.

Question 1�. Find the approximate deepest ground state of
a binary alloy on fixed lattice for a given n�m� p supercell.

Question 2. Find all exact ground states of a binary alloy
on fixed lattice for a given n�m� p supercell.

Question 2�. Find all approximate ground states of a bi-
nary alloy on fixed lattice for a given n�m� p supercell.

The four questions are separated according to whether one
seeks multiple answers, e.g., questions 1 and 1�, for which
we search for a number of ground states simultaneously, or
singular answers, e.g., questions 2 and 2�, for which we
search for a single ground state or an approximate ground
state. Furthermore, we differentiate between exact and fuzzy
searches. For instance, we define an answer to question 1� as
any configuration less than 3 meV from the exact deepest
ground state, as obtained from answering question 1. In a
similar fashion, we formulate question 2� as the search for
all approximate ground states. More explicitly, we search for
a convex-hull line C3 meV�x� which is no more than 3 meV
from the exact convex hull line C�x� �obtained here from
answering question 2� for a given n�m� p supercell, e.g.,
∀x� �0,1�, 
C3 meV�x�−C�x�
�3 meV. In practice, one does
not know C�x� beforehand. Hence, one cannot know without
solving question 2 when question 1� has been solved. Nev-
ertheless, this formulation allows us to compare the expense
of absolute convergence with approximate convergence, as
well as compare exact versus fuzzy search goals. Note that
each of these questions is termed with respect to a single
ICS. The result for all configurations with N lattice sites is
recovered by searching each of the �N2/3 ICSs.

III. MATING AND EVOLVING ALLOYS ON A FIXED
LATTICE

The configuration space of metallic binary alloys such as
Au1−xPdx is extremely complex. Indeed, it is expected that
swapping an Au atom for a Pd atom will require little energy.
In Fig. 2, a local minimum is defined as any decoration for
which swapping any Au atom with a Pd atom �or vice versa�
will raise the formation enthalpy. We find that the number of
local minima grows exponentially with the size of the super-
cell. Furthermore, a large number of local minima are no
more than 3 meV from the global minima. The complexity of
the search space prompts us to use methods which are not
hindered by local minima, namely, genetic algorithms �GAs�.
In Sec. III A below, we describe two general flavors of GA,
one inspired from the Darwinian theory of evolution and the
other from the Lamarckian theory of evolution. We then de-
scribe two possible mating processes, a real-space bit-string
mating and a reciprocal-space mating.

A. Lamarckian genetic algorithm versus Darwinian
genetic algorithm

Historically, two different theories of evolution attempted
to describe the apparition and survival of species in nature.
In both theories, individuals are born with traits inherited
from their parents and are able to pass on traits to their off-
springs. Depending on these traits, individuals may be better
fitted to survival than others, such that eventually “good”
traits persist across generations, whereas bad traits are lost.
What happens in between birth and procreation is where the
Lamarckian and the Darwinian theories of evolution differ.
In the former case, individuals have the capacity to modify
the traits they inherited at birth such that they become more
apt at survival. It is the modified traits which are passed on to
the offspring. In the latter case, traits inherited at birth cannot
be modified and are passed on “as is” to the offspring, in
which case luck �and environmental pressure�, rather than
individual self-determination, is the motor of evolution.

A Darwinian GA proceeds as described above by survival
of the fittest only. Individuals cannot improve during their
lifetimes. Their fitness at birth defines their chances of mat-
ing and survival. Lamarckian genetic algorithms are widely
used in structural optimization19,21–24 �e.g., optimization of
cell vectors and atomic positions in nanoclusters or periodic
crystalline structures�. Generally, each newly created off-
spring undergoes atomic relaxation, thereby improving the
traits—the atomic positions—it received at birth. It is the
improved atomic positions which it passes on to its own
offspring. The goal of such a procedure within GA is to
simplify the energy landscape by considering only local
minima for mating. We propose here a Lamarckian genetic
algorithm where the atomic species occupying the lattice
sites are relaxed using the virtual-atom scheme described be-
low. We will compare the efficiency of the Lamarckian GA
with respect to that of the Darwinian GA. Note that the
cluster-expansion functional includes positional relaxation de
facto.

B. Atomic-specie relaxation with the virtual-atom procedure

The challenge in any type of decoration search is that the
search space is discrete, each lattice site being occupied by
either an A or a B atom. A local refinement of the site occu-
pations can be defined using local A↔B transmutations at
some lattice sites. The procedure is complicated by the fact
that, a priori, one cannot use gradient-directed minimization
methods, since gradients do not exist between discrete site
occupations. This type of minimization problem where vari-
ables are limited to integer values is generally known as
“integer programing.”47 They are often treated by relaxing
the integer constraints in some way. This approach was taken
in, e.g., physics and engineering by Bendsøe and Kikuchi,48

who were interested in optimizing the spatial distribution of
anisotropic material for mechanical load and other proper-
ties. Marzari et al.49 considered virtual atoms, or “alchemical
potentials,” as perturbations to the virtual crystal approxima-
tions. In conjunction with Monte Carlo calculations, they
recovered the epitaxial phase diagram of GaxIn1−xP.49 The
idea was then used in the context of molecular decoration by
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Wang et al.9 In their “linear combination of atomic poten-
tials,” each of the substitutional sites i of a backbone mol-
ecule is decorated by a fictitious atom �or chemical group�
with a fictitious potential Vi, where Vi=xiVA+ �1−xi�VB is the
concentration-weighted linear average of the end-point po-
tentials VA and VB. Each lattice site, or molecule site, is
occupied by a different virtual atom. By defining a virtual
fitness 	�n���� using these virtual atoms, the gradients
�	�n���� /�xi can be introduced which represent the “chemical
appeal” of an A↔B transmutation at site i.

The original approach of Wang et al.9 consists of mini-
mizing the virtual total energy with respect to the occupa-
tions xi, often resulting in a nonphysical minimum where the
sites are occupied by fictitious virtual atoms. Unfortunately,
there is no clear link between the virtual minimum and the
physical minimum-energy decoration. Furthermore, it is dif-
ficult to enforce physicality constraints such as Si

2= 
1 using
either Lagrangian multipliers or penalty functions. Generally,
“constrained” minimization procedures work by first finding
a region of space where the constraints are satisfied and then
looking for the minimum within this region. In our case,
each region spans a discrete point of the configuration space.
Hence, a constrained minimization approach will yield only
the closest physical point from the starting point, rather than
the physical minimum.50 The virtual-atom “jump” strategy
we have adopted �Fig. 3� circumvents these difficulties. We
evaluate 	�n���� and first-order derivatives with respect to
A↔B transmutation only at physical points. Proceeding
from a starting physical configuration �0, the gradient
�	�n���0� /�xi at a random site i is evaluated. A negative gra-
dient indicates that transmuting the atom at site i could lead
to a lower energy. In that case, the depth 	�n���1� of this
neighboring configuration �1 is evaluated, and the procedure
iterates from the better configuration �0 or �1. Otherwise, if
the gradient is positive, the procedure iterates with a different
lattice site j. The order in which the sites are evaluated is
random. Convergence is deemed achieved when every lattice
site has been explored without predicting or finding a better

neighboring configuration. A similar approach was intro-
duced recently by Keinan et al.10

C. Real-space bit-string search versus reciprocal-space search

Mating is the key to a successful GA: it must be able to
identify and pass on favorable traits and patterns from par-
ents to offspring. Previous genetic algorithms for type �iii�
general space-group optimization19,21–23,38,51 and type �ii�
configuration-search11 mate individuals directly in real space
�see Fig. 4�. The former approaches19,21–23,38,51 generally de-
fine a plane in real space which cuts the configuration of
each parent into two �see Fig. 4�b��. Two “half structures”
are then chosen and spliced together to form a new indi-
vidual. The objective is to integrate into one individual the
real-space patterns present in each half of the parents. Unfor-
tunately, this procedure also produces patterns straddling the
cutting plane which are not inherited but are rather an artifact
of the mating procedure. As such, it is likely that these pat-
terns are not particularly fit, i.e., that they do not correspond
to low-energy structures. Type �ii� configuration search pro-
ceeds by swapping atom types between two parents, e.g., by
performing a standard bit-string mating where the occupation
of each site i in the ICS is identified by a “spin variable”
Si= 
1 �where Si=1 corresponds to an occupation of site i
by an A atom and Si=−1 to that by a B atom�. It can also be
viewed as an extreme version of real-space mating where

Virtual Atom procedure.

2

4

−2

−4

1−1 Si

O(σ)

σ0

σ1

FIG. 3. �Color online� Description of the virtual-atom jump
minimizer. The algorithm evaluates O only at physical configura-
tions and its gradients only between first-neighbor physical points:
�i� A physical configuration �0 is chosen as a starting point. �ii� The
gradient at one lattice site i is evaluated. �iii� If this gradient is
negative, then P��1� is evaluated, and the search proceeds from the
better structure �0 or �1. �iv� If, on the other hand, the gradient is
negative, the gradient at the next lattice site j is evaluated, and the
search proceeds from there.

(c) Real-Space Bitstring Mating

+ =

(b) Real-Space Mating

+ =

(a) Reciprocal-Space Mating

+ =

FIG. 4. �Color online� In �a� reciprocal-space mating, individual
configurations are identified as waves of A /B material �represented
by sinusoidal lines�. A new individual is constructed from the A /B
material waves of two parents. In �b� real-space mating, the two
parents are cut in half by a plane �dashed line in one-dimensional
�1D� figure� and the two half structures are spliced together into a
new individual. With bit-string mating �c�, each lattice site is
mapped as a bit on a bit string; this is equivalent to a real-space
mating, where each atom is at the center of its own cut-and-splice
region.
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each parent is cut into as many “cut-and-splice” regions as
there are atoms in the supercell �see Fig. 4�c��. In addition to
the cut-and-splice cross-over operation described above, one
also introduces a real-space mutation operator where ran-
domly chosen atoms in the unit cell are flipped from an A to
a B atom. The rate with which the mutation operator is ap-
plied and the number of sites to flip per mutation are con-
trolled via two parameters. We present here a mating proce-
dure for type �ii� optimizations, reciprocal-space mating,
which does not suffer from the drawbacks of cut-and-splice
operation and incorporates crossover and mutations in a
single operation.

Reciprocal-space mating �Fig. 4�a�� proceeds by charac-
terizing configurations not through the real-space occupa-
tions Si= 
1 of site i but rather through their Fourier trans-
form, i.e., the structure factor of the configuration S�k�,

S�k� = �
j��

Sje
iRj·k, �3�

where R j is the position of lattice site j in the ICS and �k� is
the finite set of reciprocal-space vectors k for which S�k� is
nonzero. The set of amplitudes S�k� uniquely identify each
configuration � as a sum of “concentration waves” of mate-
rials A and B �see Fig. 4�. Reciprocal-space mating proceeds
in two steps: �i� an intermediate configuration is created us-
ing a cut-and-splice approach in reciprocal space, and �ii� a
“discrete” configuration is obtained from the intermediate
structure with complex lattice-site occupations. In the first
step, two parents are selected and their S�k� are identified. A
new intermediate configuration is created by setting the
value of each of its structure factors S�k� to that of one
parent or the other. As such, the intermediate configuration is
the interference pattern of inherited concentration waves.
When transformed to real space, this intermediate configura-
tion is not necessarily physical in the sense that Si� 
1
�indeed, Si could be complex�. In the second step, a physical
offspring configuration is then deduced by mapping each
spin to −1 or 1, depending on whether its value in the inter-
mediate configuration is on the left- or right-hand side of the
complex plane. This mating procedure has the advantage of
directly representing expected patterns of ordered structures,
such as ordering �A-B� or clustering �A-A� of first-neighbor
pairs. Furthermore, since concentration waves span the
whole periodic supercell, the occupation of any one site is
correlated with the occupation throughout. In comparison, in
real-space mating,19,21–23 the inheritance of sites on one side
of the cutting plane are not correlated with the inheritance of
sites on the other. As such, beneficial ordering patterns across
the whole configurations are less likely to appear. For in-
stance, ordering or clustering of first-neighbor pairs is inher-
ently broken across the cutting plane. By representing peri-
odic configurations with a natural basis �reciprocal-space
waves� for periodic ordering, we expect beneficial ordering
patterns to appear and be retained with more ease. Note that
the reciprocal-space mating is not restricted to systems with
dominant pair interactions or superlattice ground-state struc-
tures.

We will examine the success rates of four different ge-
netic search strategies: �1� real-space bit-string Darwinian

genetic algorithm �r-GA�, �2� reciprocal-space Darwinian
genetic algorithm �k-GA�, �3� real-space bit-string Lamarck-
ian genetic algorithm �r-LGA�, and �4� reciprocal-space
Lamarckian genetic algorithm �k-LGA�. We show that the
reciprocal-space Lamarckian genetic algorithm solves the
questions in Sec. II D at least as fast, and generally faster,
than the other three methods. Furthermore, it is the most
black box of the four methods, requiring for best efficiency
the optimization of only two parameters, the population size
and the number of generated offsprings, across a relatively
narrow range �see Appendix A�.

IV. COMPARING THE SUCCESS RATES OF STOCHASTIC
SEARCH STRATEGIES

Genetic algorithms are essentially stochastic. The appear-
ance of traits within a population, e.g., low-energy configu-
rational patterns, is mostly dictated by random choice, even
if their persistence is determined by their relative fitness.
When starting an evolutionary process, one is never assured
how soon good traits will happen. For instance, we will show
the reciprocal-space Lamarckian genetic algorithm presented
above will recover all thermodynamically stable decorations
at 0 K of a 2�2�8 supercell with on average 7700–10 400
evaluations of the cluster-expansion functional. This rather
large interval is a direct result of the stochastic nature of the
genetic algorithms. It is not limited however to GA search
strategies. Indeed, were we to use a deterministic approach
alone, such as the virtual-atom procedure described above,
any given run would not be assured to find the global
minima. One generally proceeds then by restarting the deter-
ministic approach of choice from different random starting
positions.

In the following we rigorously compare the four search
strategies by assessing their statistical success rates. More
explicitly, we define the degree of confidence ��n�, e.g., the
expectation of success, as the ratio of evolutionary runs
which have met success with n or less calls to the cluster-
expansion functional over the number of performed runs
�generally 400�. We then explore the behaviors of the four
strategies in relation to the size of the system �e.g., the num-
ber of atoms considered� for a degree of confidence �
=95%.

In practice, one does not know a priori when a search
procedure has converged toward the global minimum. None-
theless, a statistical study requires the end result to be
known. In our case, they were obtained by running the
search procedures ad absurdum. Such an approach is not
conceivable for practical studies. We hope by performing it
here to provide reasonable estimations as to how long search
procedures should be allowed to go on to obtain results with
a good degree of confidence.

V. COMPUTATIONAL DETAILS

A. Fitting the configuration space to a cluster-expansion
functional

In principle, all quantities described above could be com-
puted from a direct energy functional Edirect���. Here, we
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choose to first fit total energies computed from first prin-
ciples onto a cluster-expansion functional. We will use a
cluster-expansion functional of Au1−xPdx which has been
previously fitted to a few density-functional-theory �DFT�
total energies.28 The resulting cluster-expansion functional
allows us to compute formation enthalpies outside the fitting
set to within �3 meV of DFT energies at a fraction of the
cost in computer resources. Indeed, beyond the need for a
fast functional to perform the ground-state search detailed in
this paper, the cluster-expansion functional can also be used
to obtain the formation enthalpy of the random alloy, or even
x-T phase diagrams using the Monte Carlo method.52

Configurational searches can be performed on explicit
Born-Oppenheimer energy surfaces Edirect�� , �R�� evaluated
on the fly53,54 or by first parametrizing Edirect�� , �Rmin��,
where �Rmin� is the set of relaxed atomic positions of con-
figurations �. The latter can be given by cluster expansion,
which fits a few ��50� total-energy calculations obtained
from DFT to a generalized Ising model,

�HCE��� = J0 +
1

N��
i

JiSi + �
ij

JijSiSj + ¯

+ �

k
�ECS�k̂,x��
S�k�
2F�k,x�� , �4�

where the occupation of each lattice site i by an A or a B
atom in configuration � is parametrized by the value of a
discrete spin variable Si= 
1. The reference energy J0, the
on-site interaction-energy Ji, the pair interaction energies Jij,
as well as other possible higher-order interaction energies,
represent the excess chemical formation energy of each site i
in conjunction with its neighboring environment. The long-
range strain effects are represented by the last term. It is
composed of a sum over the finite set of allowed reciprocal-

space vectors.29 �ECS�k̂ ,x� is the cost in energy of maintain-
ing lattice coherence between pure A and pure B along an

interface of orientation k̂. S�k� is the structure factor of con-
figuration � for the reciprocal-space vector k. F�k ,x�� is
defined as F�k ,x��=e−k2

�4x��1−x���−1. The random-alloy
mixing energies �HR�x� can be obtained by taking the ana-
lytical configurational average of �HCE���. A priori, opti-
mizing �HCE��� is a discrete problem since each lattice site
is occupied by either an A or a B atom.

As described above, the cluster-expansion functional con-
tains two terms: Ising-type pair and many-body interactions
which describe the chemical interactions between atomic
species at different lattice sites and a constituent strain part
which models the elastic energy. The former can be and is
made linear with respect to any given spin. The latter de-
pends on the structure factor of the configuration and cannot
be quite as easily linearized.

Once obtained, cluster expansion presents a number of
advantages: �i� configurations outside the fitting set are pre-
dicted with a statistical error of �3 meV with respect to their
local-density approximation �LDA� excess formation energy;
�ii� it provides the excess formation energy of atomically
relaxed configurations; �iii� for configurations of N�20 at-
oms, direct enumeration methods exist30 which can be used

to confirm the findings of the sampling methods presented in
this paper; and �iv� evaluating an already generated �HCE���
is effortless compared to LDA. Note that since �HCE��� re-
produces ab initio results quite accurately, we expect that the
behavior of optimizers which use �H��� only �as opposed to
the virtual-atom approach, which also uses its gradient� will
be quantitatively the same for both cluster expansion and ab
initio.

As an example, we will study in this paper face-centered-
cubic Au1−xPdx alloy, using the cluster expansion param-
etrized by Barabash et al.28 They evaluated �50 energies
�H��i� of ordered configurations and selected the appropri-
ate pair and many-body interactions �J� via a genetic
algorithm.55 �HCE��� is obtained from the following itera-
tive procedure:28–30 �i� the formation enthalpy of �20 four-
atom configurations are computed using density-functional
theory, �ii� trial cluster-expansion functionals with optimized
sets of interactions are fitted to these configurations, �iii� a
configuration search yields the ground states for these func-
tionals, and �iv� the formation enthalpies of predicted ground
states are computed with DFT and added to the fitting set.
The cluster expansion is deemed converged when no new
ground states �with N�20 atoms� are found. The formation
enthalpy of face-centered-cubic Au1−xPdx is described using
13 pair interactions, 5 three-body interactions, and 2 four-
body interactions,28 as well as a constituent strain term.29

B. Details of the genetic algorithms

The procedures are parameterized according to the popu-
lation size and the replacement rate �number of offsprings
per generation�. Furthermore, the real-space bit-string mating
contains two additional variables: one controlling how often
crossover is carried out over mutation and another control-
ling the number of atoms transmuted during each mutation
operation. The results presented below have been optimized
by hand for maximum efficiency at degree of confidence �
=95%. A brief description of how these parameters affect the
efficiency of the search strategy is given in Appendix A.
Overall, the reciprocal-space Lamarckian genetic algorithms
require the fewest adjustments to the parameters for maxi-
mum efficiency. In general, gradients are much less expen-
sive to obtain within first-principles pertubation theory than
total energies. For the sake of simplicity, the computational
cost of obtaining gradients in the following statistical study
is set to zero. More details on the effect of including the
computational cost of the gradient evaluations can be found
in Ref. 39. In order to promote diversity within the GA popu-
lation and enable the search to explore a larger region of the
configuration space, we have introduce a “diversity
constraint”39 such that candidate offsprings are rejected if
they are clones of individuals in the current population or in
the newly generated �and accepted� offspring. As such, there
is never more than one copy of a configuration in the popu-
lation at any given point during the evolutionary run. Fur-
thermore, during the Lamarckian refinements, transmutations
which would reproduce an individual of the current popula-
tion are also disallowed.

VI. RESULTS

In Secs. VI A and VI D, we discuss each of the behavior
of the search strategies for each question separately. Ques-
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tions 1, 2, 1�, and 2� correspond, respectively, to Figs. 5–8.
The top three panels of each figure show the average number
of evaluations of the cluster-expansion functional required to
solve the figure’s particular question with an expectation for
success � in 2�2�8 supercells. In the lower panels, we
report the number of evaluation required on average by 2
�2�n supercells of increasing sizes and degree of confi-
dence �=95%. Statistics were obtained using a minimum of
400 independent evolutionary runs for each search strategy.

A. Question 1: Finding exact deepest ground states of a
given

nÃmÃp supercell

1. Real-space GA versus reciprocal-space GA

Figures 5�a� and 5�b� compare the use of real-space bit-
string and reciprocal-space matings in GA. Figure 5�a� re-
ports the average number of evaluations required to achieve
a given expectation for success, or degree of confidence,
within a 2�2�8 supercell. We find that the reciprocal-space
mating performs better than the real-space bit-string mating
for any degree of confidence �. The reciprocal-space mating
generally needs a smaller population size, leading to a
shorter “learning period,” during which the search strategies
evolve the starting population to the region of space contain-
ing the deepest ground state, hence resulting in a much lower

value at �=0%. For most of the degree of confidence range
�� �0% ,100%�, the curve is linear. This means that higher
success rates come at an exponential increase in the required
number of evaluations. Figure 5�b� reports the number of
evolutions required to find the exact deepest ground state of
2�2�n supercells versus n with a degree of confidence of
�=95% for real-space bit-string and reciprocal-space GAs.
We find again that the reciprocal-space mating is much more
efficient. Interestingly, both curves are sawlike, with the
number of evaluations required by 2�2�n supercells with
even n smaller than those with odd n. The cluster expansion
of Au1−xPdx is clustering, e.g., the first-neighbor pair interac-
tion favors Au-Pd patterns over Au-Au or Pd-Pd patterns.
This type of arrangement is not possible for odd n, leading to
a more complex configuration space.

2. Darwinian evolution versus Lamarckian evolution

Panels �c� and �d� and �e� and �f� of Fig. 5 compare Lama-
rckian and Darwinian evolutions with real-space bit-string
mating and reciprocal-space mating, respectively. We also
plot the behavior of the virtual-atom search strategy with
multiple random starts. We find that the real-space Lamarck-
ian evolution performs better than its �Darwinian� GA coun-
terpart, i.e., r-LGA is faster than r-GA and k-LGA is faster
than k-GA. At the same time, the virtual-atom approach and
the real-space Lamarckian GA are comparable. Whether it is

Question 1: Find the exact deepest ground-state of one n × m × p supercell.

Real-Space Bitstring vs Recip. GA Darwinian vs Lamarckian GA

Number of Configurations (24n) of 2 × 2 × n supercells
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FIG. 5. �Color online� Finding the exact deepest ground states of n�m� p supercells of fcc Au1−xPdx �question 1�: �a� and �b� compare
real-space GA �r-GA� and reciprocal-space GA �k-GA�, whereas �c�–�f� compare Darwinian evolution �r-GA and k-GA� to Lamarckian
evolution �r-LGA and k-LGA�. Results for the VA approach with multiple restart from different random starting points are also presented.
The upper figure shows the number of total-energy evaluations required to find the deepest ground state of a 2�2�8 supercell with a degree
of confidence ��%�. Shown in the lower panel is the number of evaluations required for a 2�2�n supercell with a degree of confidence of
�=95%. These statistics have been compiled from 400 independent runs for each strategy and supercell. The formation enthalpies of the
AuxPd1−x alloy on a fcc lattice were obtained from a cluster-expansion functional parametrized in Ref. 28. The overall behavior is charac-
terized by an exponential increase in the required number of total-energy evaluations with the size of the system N=nmp. Addressing
question 1 for systems with more than 20 atoms is hardly feasible with DFT-based functionals.
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Question 2: Find all exact ground-states of one n × m × p supercell.

Real-Space Bitstring vs Recip. GA Darwinian vs Lamarckian GA

Number of Configurations (24n) of 2 × 2 × n supercells
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FIG. 6. �Color online� Searching for all exact ground-states of n�m� p supercells of fcc Au1−xPdx. See caption of Fig. 5 for more
details. Conclusions: Panels �c� and �d� show that the real-space genetic algorithms �r-LGA� do not benefit from mating local minima only.
The computational cost of searching simultaneously for all exact ground states is less than an order of magnitude higher than searching for
the single exact deepest ground-state configuration �see Fig. 5�. In general there are 5–12 ground states per supercell.

Question 1’: Find an approximate deepest-ground-states ( within 3 meV ) of one (n × m × p) supercell.

Real-Space Bitstring vs Recip. GA Darwinian vs Lamarckian GA
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FIG. 7. �Color online� Finding an approximate deepest ground state �within 3 meV� of n�m� p supercells of fcc Au1−xPdx �question 1��.
See caption of Fig. 5 for more details. Conclusion: Searching for an approximate solution is remarkably less complex than searching for
exact solutions. Indeed, the latter is an NP-complete problem �the average number of evaluations increases exponentially with the number
of atoms, N=4n�, whereas the empirical evidence above and in Fig. 2 shows that former may very well not be NP complete �see discussion
in text�.

IDENTIFYING THE MINIMUM-ENERGY ATOMIC… PHYSICAL REVIEW B 78, 064102 �2008�

064102-9



with respect to the degree of confidence � �panel �c�� or the
size of the configuration space �panel �d��, r-LGA performs
only as well as the virtual-atom approach. It would seem that
the computing cost inherent to performing a virtual-atom
�VA� minimization overwhelms the Lamarckian-GA benefit
of mating local minima only. On the other hand, we find in
panels �e� and �f� that reciprocal-space mating performs at
least as well with a Lamarckian evolution �k-LGA� than it
does with a Darwinian evolution �k-GA�. Overall, the
reciprocal-space Lamarckian, k-LGA, is the most effective
method for finding the exact deepest ground state.

B. Question 2: Finding all exact ground states
of a given nÃmÃp supercell

1. Real-space GA versus reciprocal-space GA

Figure 6 reports the number of evaluations with respect to
� and the size of the configuration space required to find all
exact ground-states of a given supercell. Panels �a� and �b�
show that in contrast with question 1 �Fig. 5�, the real-space
bit-string r-GA is more efficient than the reciprocal-space
k-GA for question 2 at larger configuration space and confi-
dence values. Interestingly, we note that the real-space bit-
string strategy is more effective at finding all ground states
�Fig. 6� than it is at finding only the deepest one �Fig. 5�.
This may seem a paradoxical result. It stems from the differ-
ent objective functions which are minimized in the two
cases. To find the deepest ground state, we chose to minimize
the formation enthalpy �H��� alone. When searching for all
ground states, we minimize the distance to the known con-
vex hull, �H���−C�n��x��. The latter objective incorporates

more information than is needed a priori to find the exact
deepest ground state. Nonetheless, it makes the search more
effective. This result is quite general and is discussed in de-
tail in Appendix B.

2. Darwinian evolution versus Lamarckian evolution

Panels �c� and �d� of Fig. 6 compare the real-space Lama-
rckian r-LGA and Darwinian r-GA. We find again that the
real-space bit-string Lamarckian r-LGA behaves much like
the virtual-atom search. In fact, the latter does not solve the
present question very effectively, making the real-space
r-GA a better choice here than its Lamarckian counterpart
r-LGA. Panels �e� and �f� compare the reciprocal-space
Lamarckian and Darwinian evolutions. We find that the
reciprocal-space Lamarckian GA is more efficient than either
the Darwinian reciprocal-space GA or the Virtual Atom ap-
proach by more than an order of magnitude for larger super-
cells.

C. Question 1�: Finding an approximate deepest ground state
of a given nÃmÃp supercell

1. Real-space GA versus reciprocal-space GA

Figure 7 reports the number of evaluations with respect to
� and the size of the configuration space required to find an
approximate deepest ground state of a given supercell. We
define an approximate deepest ground state as any configu-
ration within 3 meV of the exact deepest ground state found
previously. For all search strategies, solving for an approxi-
mate ground state is spectacularly less challenging. Panels

Question 2’: Find all approximate ground-states ( within 3 meV ) of one (n × m × p) supercell.

Real-Space Bitstring vs Recip. GA Darwinian vs Lamarckian GA
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FIG. 8. �Color online� Searching for all approximate ground states �within 3 meV, see Sec. II C� of n�m� p supercells of fcc Au1−xPdx

�question 2��. See caption of Fig. 5 for more details. Conclusion: Using a direct method such as the VA approach is remarkably effective
when searching for approximate solutions. It is most likely correlated with the large ratio of acceptable solutions �within 3 meV� to exact
solutions �see Fig. 2�. k-LGA is overall the most effective method for finding answers to this search, as well as those in Figs. 5–7.
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�a� and �b� show little difference between the real-space
r-GA and the reciprocal-space k-GA, with the latter having a
slight edge. Figure 2 shows that a very large proportion of
local minima are within 3 meV of the deepest ground state;
hence these are acceptable answers to this question. The
relative abundance of solutions to the problem may explain
why r-GA and k-GA display similar success rates.

2. Darwinian evolution versus Lamarckian evolution

In panels �c� and �d� of Fig. 7, we show once again that
the real-space bit-string Lamarckian evolution r-LGA be-
haves like the simpler VA approach. However, the virtual-
atom approach turns out to be very efficient when searching
for the approximate deepest ground state. This is not surpris-
ing. Indeed, we have shown in Fig. 2 that a large ratio of the
local minima lies close to the exact deepest ground state. In
fact, it grows larger with the size of the configuration space
for those supercells we have studied. Since local minima can
be obtained in polynomial time and since the number of local
minima close to the exact deepest ground state increases ex-
ponentially, it is most likely that the approximate problem
solved in this section is not NP complete. Panels �e� and �f�
compare the reciprocal-space k-GA and its Lamarckian
counterpart k-LGA. We find once again that the Lamarckian
evolutionary strategy with reciprocal-space mating is better
than its Darwinian counterpart. Overall Fig. 7 shows that
searching for an approximate answer takes less than 100
evaluations, even for a supercell with 48 atoms; hence it is
viable with computationally intensive functionals such as
DFT.

D. Question 2�: Finding the all approximate ground states of a
given nÃmÃp supercell

1. Real-space GA versus reciprocal-space GA

Figure 8 reports the number of evaluations with respect to
� and the size of the configuration space required to find all
approximate ground states of a given supercell. We mean by
all approximate ground states that an approximate convex
hull C3 meV�x� has been found such that ∀x� �0,1�,


C3 meV�x�−C�x�
�3 meV, with C�x� as the exact convex
hull of the supercell. Panels �a� and �b� show that the
reciprocal-space k-GA is more effective than the real-space
r-GA. More specifically, panel �a� shows very similar behav-
iors for both methods, with k-GA translated down from
r-GA. This difference may be assigned to the smaller
population-size requirements of k-GA �see Table III�, which
generally implies a faster rate of evolution. Since the k-GA
generally requires a smaller population, it is generally faster
across all 2�2�n supercells.

2. Darwinian evolution versus Lamarckian evolution

We find in panels �c� and �d� of Fig. 8 that the real-space
bit-string Lamarckian evolution r-LGA is once again as ef-
fective only as the underlying VA minimization. As reported
in panels �e� and �f�, the reciprocal-space Lamarckian evolu-
tion k-LGA is the most effective search strategy to find all
approximate ground states as well. Overall, searching for an
approximate convex hull is at least 2 orders of magnitude
faster than searching for the exact convex hull. The VA ap-
proach also performs remarkably well. In a sense, this may
seem surprising since the answer to question 2� must include
a number of approximate ground-state configurations across
the concentration range x� �0,1�, and the VA approach can
only find one per run. Since the VA approach does solve this
question with a similar success rate as that of k-GA, it fol-
lows that the former approach is quite sensitive to the seed
�e.g., to the particular starting point�.

VII. SUMMARY

We have performed a systematic statistical study of ge-
netic algorithm’s ability to find ground states of binary
AxB1−x alloys on a fixed Bravais lattice with x� �0,1�. In
contrast with systems such as valence compounds, the diffi-
culty of finding the minimum-energy structure of a binary
metallic alloy lies not solely in finding the correct lattice type
but also in the many near-degenerate configurations which
exist for a fixed lattice and unit cell. Indeed, such a problem
becomes combinatorial and has been shown to be NP hard.33

TABLE I. Number of evaluations required to find the exact deepest ground state with 95% degree of
confidence using reciprocal-space Lamarckian GA �k-LGA� with different population sizes. If the population
size is too small, then the search has the propensity to lock itself upon not-quite-optimal traits, resulting in
slow convergence. On the other hand, larger populations are slower to evolve. As such, there exists an
optimal population size for which the search will converge the fastest.

Population size

Supercell 10 20 30 40 50 60 80 100

2�2�3 60 70 90 100 130

2�2�4 60 80 110 130 170

2�2�5 5500 1500 440 440 510

2�2�6 260 300 370 410 420 490 530

2�2�7 2200 2500 2100 2100 1800

2�2�8 13000 2800 2100 2400 2300

2�2�9 12000 8000 7000
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Furthermore, the complete answer to a ground-state search
problem contains in general a number of configurations
across the concentration range x� �0,1�. We have shown
that combining local refinements with a reciprocal-space
mating scheme and using as an objective function the dis-
tance to the known convex hull yields a search procedure
which efficiently solves ground-state problems. Nonetheless,
finding all exact ground-state configurations of an AxB1−x
alloy of even relatively small systems soon becomes intrac-
table ��330 assessed configurations for N=12, �2800 for
N=24, and up to �39 000 for N=36� without the use of
“indirect” first-principles methods such as cluster expansion.

However, this same problem can be solved approximately
�within 3 meV� at a much smaller cost in functional evalua-
tions ��30 assessed configurations for N=12, �380 for N
=24, and �580 for N=36�. Finally, the same search proce-
dure is also quite equal to solving single-valued searches
such as the exact deepest ground-state search presented in
the paper.
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APPENDIX A: INFLUENCE OF THE GA PARAMETERS
ON THE GENETIC ALGORITHM

All the genetic algorithm results presented in this paper
were optimized for efficiency with respect to the population
size, the mutation vs crossover frequency, and the number of
mutated alleles per mutation operation. These three param-
eters strongly affect the expectation for success. We find that
the number of offsprings per generation does not affect the
efficiency of the algorithm quite as strongly. It has been kept
at 10% throughout. In general, we find that Lamarckian evo-
lution requires much smaller variations in the population

TABLE II. Number of evaluations required to find the exact
deepest ground state with 95% degree of confidence using real-
space Darwinian GA with mutation �first column� and without mu-
tations �second column�. The mutations vastly enhance the effi-
ciency of the search by introducing new traits within the population.
It allows the search procedure to explore a larger region of space by
providing diversity and reducing its propensity to saturate.

Supercell Without mutations With mutations

2�2�3 580 150

2�2�4 350 230

2�2�5 10000 910

2�2�6 5600 990

2�2�7 94000 2100

2�2�8 60000 2100

TABLE III. Population sizes used to obtain the data in Figs. 5–8. Larger populations will be required to
explore complex space more fully. As such, the population roughly increases with the size of the supercell.
Indeed, from Figs. 5–8 one can see that 2�2�n supercells with odd n are more difficult to solve than those
with even n. This is reflected in the variation of the population sizes.

Method r-GA /M k-GA r-LGA k-LGA r-GA /M k-GA r-LGA k-LGA

Question 1 Question 1�
2�2�3 30 10 5 5 10 10 5 5

2�2�4 5 20 5 5 5 20 5 5

2�2�5 500 100 5 40 15 20 5 10

2�2�6 200 100 5 10 5 20 5 10

2�2�7 2000 200 20 100 15 40 5 10

2�2�8 1500 150 50 60 15 40 5 5

2�2�9 6000 300 200 15 30 5

2�2�10 200 80 15 50 10

2�2�11 400 200 40 5

2�2�12 350 120 25 50 20

Question 2 Question 2�
2�2�3 50 40 10 20 10 10 10 5

2�2�4 20 60 30 20 20 20 5 5

2�2�5 200 700 30 40 100 20 5 20

2�2�6 200 800 60 30 100 20 20 20

2�2�7 300 1200 50 80 100 40 30 10

2�2�8 2000 700 30 30 100 60 30 10

2�2�9 3000 450 100 100 100 50 10
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size. Furthermore, the reciprocal-space mating incorporates
mutations and crossover in one single operation, without the
need for extra parameters. As a result, the Lamarckian
reciprocal-space GA is not only the most effective search
strategy presented here, it is also the most black-box-like.

We report in Table I the required number of evaluations
for answering question 2 with a degree of confidence of 95%
using the reciprocal-space Lamarckian GA and with respect
to different supercell sizes and populations. We find that
population size can have a large effect. Indeed, taking, for
instance, a 2�2�5 supercell �third row�, using a population
size of 20 individuals will require 5500 evaluations, whereas
increasing the size to 40 will obtain the answer in no more
than 440 evaluations. When evolving small populations, the
search may saturate �despite the diversity constraint�, e.g., a
not-quite-optimal region of the configuration space is found
from which the search cannot easily escape because all the
individuals in the population contain the same traits from
that region. In that case, the genetic algorithm is stuck until a
sufficiently favorable mutation happens along. If one in-
creases the population size too far, then the evolving the
population will take longer. As such, there exists a popula-
tion size which is a compromise between the possibility of
saturation and the speed of evolution. It is overall less detri-
mental to operate with a larger population than to risk satu-
ration.

Table II reports the number of evaluations required to
solve question 1 with 95% degree of confidence when using
bit-string Darwinian GA with and without mutations. The
mutation parameters have been optimized. We find that mu-
tations do have a very large impact on the efficiency of the
real-space r-GA search. Indeed, the mutation operators gen-
erally allow the search to explore a larger manifold by intro-
ducing new traits into the population. Although not shown
here, we have also added real-space mutations to the
reciprocal-space k-GA search �e.g., in addition to the

intrinsic mutations present within reciprocal-space mating�.
We find that this addition to k-GA do not accelerate the
search. It would seem that the intrinsic mutations of the
reciprocal-space mating are sufficient. As such, the
reciprocal-space GAs are more black box than the real-space
GA.

Table III gives the population sizes used for each method
in Figs. 5–8. The population roughly increases with the size
of the supercell, e.g., with the complexity of the explored
configuration space. Indeed, as evidenced in Figs. 5–8, 2
�2�n supercells with odd n are more difficult to solve for
than those with even n and thus require larger populations.
Offsprings are obtained with real-space bit-string mating by
applying either a cross-over or a mutation operation, with a
probability of 0.2–0.5 for the former. When a mutation op-
eration is applied, each allele has 2–5% chance of being
transmuted.

Statistics are collected over long independent evolution-
ary runs where populations are allowed to evolve until the
results have been found with 95% degree of confidence.
Practitioners may wonder whether it may not be more effi-
cient to performing several shorter runs with a smaller ex-
pectation for success. We show here that, excluding the pos-
sibility of saturation discussed above, it is better to let the
evolutionary process run its course. Let �0�N� be the expec-
tation for success with respect to N, the number of evalua-
tions for a single �statistical� evolutionary run. Then, on av-
erage, performing n evolutionary runs would yield a success
rate of �n�N�=1− �1−�0�N /n��n. This amounts to two rescal-
ings, N� N

n and 1−�� �1−��n. One can easily convince
oneself that the search strategies presented above will be-
come more expensive when using small repetitive evolution-
ary runs. Indeed, this result is true for any algorithm for
which the number of evaluation increases exponentially with
the requested degree of confidence, as is the case when solv-
ing NP-complete problems such as a configuration space
search.

Question 1: Find the exact deepest ground-state of a given (n× m × p) supercell.

Minimizing ∆H(σ) Minimizing ∆H(σ) − C(n)(σ)

Number of Configurations (24n) of 2 × 2 × n supercells
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FIG. 9. �Color online� See caption of Fig. 5. The number of evaluations required to find the exact deepest ground states is plotted with
respect to the configuration space size for 2�2�n supercells, when �a� minimizing the formation enthalpy �H��� and �b� when minimizing
the distance to the known convex hull �see Sec. II B� at generation n of the genetic algorithm, �H���−C�n����. Note that �i� both Darwinian
GAs find the answer faster in �b� than in �a� across all supercells and �ii� both Lamarckian GAs and VA find the answer faster in �b� for
supercells larger than n=8. Although the depth to the known convex hull changes during an evolutionary run, it is nonetheless an easier
quantity to minimize than the formation enthalpy alone.
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APPENDIX B: SUBTRACTING THE CONVEX HULL
GIVES SMOOTH CONFIGURATION SPACE

One general question regarding the strategy we have cho-
sen for all ground states, namely, to minimize �H���
−C�x�� rather than �H��� at fixed concentration x�, is that it
constitutes a moving target, and thus may actually be more
difficult to optimize. We find however that �i� a fixed con-
centration is a cumbersome constraint during mating opera-
tions, especially with the reciprocal-space mating and the
Lamarckian refinements described in the paper, and �ii� it
requires for N-atom configurations N independent GA mini-
mization. Furthermore, there is evidence that removing the
convex hull actually makes the space less complex. Figure 9

plots the required number of evolutions for finding the exact
deepest ground state with respect to 2�2�n supercells for
all five search strategies presented here. In panel �a� of Fig.
9, the objective function minimized to solve question 1 is, as
mentioned earlier in the text, the formation enthalpy �H���.
On the other hand, in panel �b� the objective function be-
comes the depth to the known convex hull at iteration n of
the genetic algorithm, e.g., the objective function used pre-
viously to find all ground states, 	�n����=�H���−C�n��x��.
Remarkably, although this last objective is more complex
and, in fact, changes during the course of the evolutionary
run, both Darwinian GAs converge faster in panel �b�, and
both Lamarckian GAs and the virtual-atom approach con-
verge faster in panel �b� for supercells larger than 2�2�8.
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